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Abstract
We propose a set of nonlinear integral equations to describe the excited states
of an integrable the spin-1 chain with anisotropy. The scaling dimensions,
evaluated numerically in previous studies, are recovered analytically by using
the equations. This result may be relevant to the study of the supersymmetric
sine-Gordon model.

PACS numbers: 75.10.Jm, 05.50.+q

1. Introduction

The 1D spin systems have been providing problems of both physical and mathematical interest.
See, e.g., [1, 2]. Among them, there exists a family of solvable models of the Heisenberg type
with spin S [3, 4]. In this paper, we are interested in the excited states of a member of the
family, the spin-1 chain with anisotropic interaction.

Recent progress in the study of the integrable system brings forth a powerful mechanism,
the method of nonlinear integral equations (NLIE, for short) [5, 6]. The NLIE method has
been successfully applied to the study of the XXZ model

(
S = 1

2

)
. It clarifies the finite-size

property of the ground state as well as the scaling behaviour of excited states (of corresponding
six-vertex model [7]). The application is not restricted to the lattice models: it also provides
detailed descriptions of the excited states in the field theoretical models such as the sine-Gordon
model [8–12] and perturbed conformal field theories [13, 14].

The study of the higher spin cases has, however, encountered technical difficulties. This
has been resolved in [15] at least for the ground state. There the NLIE, which is relevant to the
evaluation of the free energy for arbitrary S, is derived for the isotropic case. See also [16] for
an interesting application of the result to the 0(4) nonlinear sigma model in the limit S → ∞.

In this paper, we extend the study to excited states of the anisotropic S = 1 chain. Simple
assumptions, suggested by numerical investigations, lead to a set of NLIE which enables the
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evaluation of energies for arbitrary system size. The proposed NLIE has a structure which
seems to be a natural extension of the excited NLIE for the spin- 1

2 case. We will analytically
verify the previous observations on some low lying excitations by numerical methods [17, 18].

The result obtained here may be relevant not only in the spin chain problem. Recently the
study of excited states in supersymmetric sine-Gordon model has attracted much attention
[19, 20]. It is expected that the proper discretization of the model is given by the
inhomogeneous anisotropic spin-1 chain. We thus hope that the current study will shed
some light on the analysis of the supersymmetric sine-Gordon model.

2. The model and the assumptions

We are interested in the spin-1 chain with anisotropic interactions. The Hamiltonian contains
several two-body interactions,

H=
N∑

i=1

(
σ⊥

i − (
σ⊥

i

)2
+ cos 2γ

(
σ z

i − (
σ z

i

)2) − (2 cos γ − 1)
(
σ⊥

i σ z
i + σ z

i σ⊥
i

) − 4 sin2 γ
(
Sz

i

)2)
(1)

where a shorthand notation

σi = Si · Si+1 = σ⊥
i + σ z

i

is employed. For simplicity, we impose the periodic boundary condition, Sa
N+1 = Sa

1 , a =
x, y, z. The parameter γ specifies the anisotropy. Throughout this paper, we only consider
the range γ < π

3 and exclude γ of the form γ = nπ
m

with (m, n) co-prime.
We follow the strategy in [15] and start from a integrable 19-vertex model [21, 22]. The

19-vertex model is obtained from the 6-vertex model by the fusion procedure [22, 23]. The
latter is associated with the spin- 1

2 XXZ model while the former corresponds to the spin-1
chain. The strategy is to treat the spin-1 model and the spin- 1

2 model simultaneously. To be
more precise, we introduce commuting transfer matrices T1(x) and T2(x) acting on spin-1
quantum space consisting of N sites. The auxiliary space for the former is given by the spin- 1

2
space while it is spin 1 for the latter.

Their explicit eigenvalues read,

T1(z) = φ(z − iγ )
Q(z + iγ )

Q(z)
+ φ(z + iγ )

Q(z − iγ )

Q(z)

T2(z) = φ
(
z − i

γ

2

)
φ

(
z − i

3γ

2

)
Q

(
z + i 3γ

2

)
Q

(
z − i γ

2

)
+ φ

(
z − i

γ

2

)
φ

(
z + i

γ

2

) Q
(
z + i 3γ

2

)
Q

(
z − i 3γ

2

)
Q

(
z + i γ

2

)
Q

(
z − i γ

2

) (2)

+ φ
(
z + i

γ

2

)
φ

(
z + i

3γ

2

)
Q

(
z − i 3γ

2

)
Q

(
z + i γ

2

)
φ(z) = sinhN z.

Note that in place of standard spectral parameter u, we choose u = ix. The important function
Q is given by the Bethe ansatz roots zj (j = 1, . . . , M); Q(z) = ∏M

j=1 sinh(z − zj ). We will
denote three terms of T2(z) in (2) by λi(x), i = 1, 2, 3.

The eigenvalue E of the Hamiltonian is evaluated through

E = 1

i

d

dx
log T2(x)|x→−iγ /2. (3)
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Thus once Q is obtained, the evaluation of E is straightforward. This is equivalent to saying
that, if all locations of the Bethe ansatz roots are known for excited states, then the energy
is evaluated. This is, however, a formidable task for large systems. Apart from a few lower
excitations, it is extremely difficult to find all locations of Bethe ansatz roots.

The most crucial observation in the NLIE formulation is that this task is avoidable. With
proper choice of auxiliary functions, one can bypass dealing with a complete set of Bethe
ansatz roots; one only has to deal with a finite number of complex roots characterizing the
excitation [7, 10, 13, 14, 24]. This may break down if very high excitations are of interest.
We nevertheless believe that this method will be efficient for the treatment on excited states
which are physically important in the thermodynamic limit.

Let us be more accurate. In the ground state, the Bethe ansatz roots are given by the sea
of 2-strings. By a 2-string we mean a pair of Bethe ansatz roots xi ± iyj with

∣∣yj − γ

2

∣∣ � 1.
We consider excitations for which only a finite number of roots deviate from the sea of

2-strings.
In addition, we will make the following three assumptions.

Assumption 1. There should not be a pair of complex roots z1, z2 such that z1 − z2 is a
multiple of γ .

For the string-type solutions, it is known that the separation of neighbouring roots in a
string deviates slightly from γ for finite system sizes [25]. Our assumption thus does not
contradict this pattern. It, however, excludes the complete strings [26, 27]. Therefore we
should devise another route to deal with the case when q (= eiγ ) is at roots of unity, which is
beyond the present scope.

Assumption 2. The following classification of complex roots, other than 2-strings, is possible.

1. inner roots: |Im zj | <
γ

2 , j = 1, . . . , MI

2. close roots: γ

2 < |Im zj | <
3γ

2 , j = 1, . . . ,MC

3. wide roots: 3γ

2 < |Im zj | < π
2 , j = 1, . . . ,MW

4. self-conjugate roots: |Im zj | = π
2 .

The above classification has already been proposed in [28] which discusses the excitations
in the limit N → ∞. There a complex conjugate pair of inner roots is referred to as a narrow
pair while a pair of close roots is referred to as intermediate. We adopt a different notation
for similar roles played by them in comparison with the spin- 1

2 case. We will sometimes
denote the locations of inner roots by s±

j , close roots by c±
j , wide pairs by w±

j and self-
conjugate roots by pj + π

2 i. Here the upper index +(−) means its imaginary part being positive
(negative).

The zeros of T1(x) and T2(x) also play important parts. The numerical investigation for
N up to eight leads to the remarkable feature.

Assumption 3. The zeros of T1(x) and T2(x) in the strip Im x ∈ [−γ /2, γ /2] distribute exactly
on the real axis. We denote their locations by θ

(1)
j (j = 1, . . . , N1) and by θ(2)

α (α = 1, . . . , N2),
respectively.

For example, we plot the zeros of T1(x) and T2(x) for two cases in figure 1. The state in
the left part of figure 1 corresponds to an excited state in the singlet sector (M = 6), system
size is l N = 6 chain and with the coupling constant γ = π

7.5 . For the state in the right part of
figure 1, parameters are chosen M = 7, N = 8 and γ = π

9.5 . The unit of tics in the imaginary
direction is normalized to γ

2 . These figures thus clearly support assumption 3, which simplifies
the derivation of the nonlinear integral equations drastically.
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Figure 1. Zeros of T1(x) and T2(x). Left: an excited state in N = 6 chain M = 6, γ = π
7.5 .

Right: N = 8 chain M = 7(Sz = 1), γ = π
9.5 .

We supplement the explicit locations of corresponding BAE roots.

BAE roots for N = 6, M = 6, γ = π
7.5

0.656 402 083 87 + 1.570 796 3268i −0.535 495 168 34 + 1.570 796 3268i
−0.115 334 051 90 + 0.205 045 390 87i −0.115 334 051 90 − 0.205 045 390 87i
−0.247 218 896 35 0.356 980 084 62

BAE roots for N = 8, M = 7, γ = π
9.5

0.619 186 379 56 + 1.570 796 3268i −0.104 877 183 81 + 1.570 796 3268i
−0.836 910 282 64 + 1.570 796 3268i 0.299 661 023 87 − 0.152 149 003 388i
−0.187 456 363 22 0.024 363 369 664

0.299 661 023 87 + 0.152 149 003 39i

3. Auxiliary functions and sum rules

In this section, we introduce several auxiliary functions which are crucial for our purpose.
Firstly we define the most natural auxiliary function a(z), defined by

a(z) = λ2
(
z + i γ

2

)
λ1

(
z + i γ

2

) = λ3
(
z − i γ

2

)
λ2

(
z − i γ

2

) .

In view of a(z), the Bethe ansatz equation can be cast into the form a(zj ) = −1 (j =
1, . . . ,M). One also uses its logarithmic form, Z(1)

N (zj ) = 2πIj , where a(z) = exp
(
iZ(1)

N (z)
)
,

which leads to the root density function formulation in the thermodynamic limit. The first
auxiliary function, a(z), thus has the deep connection to the Bethe ansatz equation and plays
the fundamental role in the study of the spin- 1

2 chain. The previous study [15] shows that,
unexpectedly, this is not the case for general values of S at their ground states. Instead, the
most crucial functions for the ground state for S = 1 are given by

b1(x) := λ1(x) + λ2(x)

λ3(x)
b̄1(x) := λ2(x) + λ3(x)

λ1(x)
. (4)

Physically, b1(x) is related to the density function associated with the centres of 2-strings.
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For a technical reason, we introduce the shifted functions1, b(x) = b1(x + iε)
b̄(x) = b̄1(x − iε) and capital ones B(x) = 1 + b(x), B̄(x) = 1 + b̄(x). The definition
obviously concludes,

T2(x) = φ
(
x + i

γ

2

)
φ

(
x + i

3γ

2

)
Q

(
x − 3iγ

2

)
Q

(
x + iγ

2

) B(x − iε) (5)

= φ
(
x − i

γ

2

)
φ

(
x − i

3γ

2

)
Q

(
x + 3iγ

2

)
Q

(
x − iγ

2

) B̄(x + iε) (6)

and B(x) = 0 when x = θ
(2)
j − iε.

In analogy to a(z) and Z
(1)
N (x) we introduce Z

(2)
N (x) := 1

i log b(x). In contrast with

Z
(1)
N (x), Z

(2)
N (x) is in general a complex-valued function. We assume that its real part is an

almost monotonic increasing function of x and that the imaginary part vanishes when the real
part takes integers (half-integers). One then applies the similar argument for the spin 1

2 [10]
to derive the following sum rule,

N2 = 2(S + Mp) − 2

π
θ(3γ S + θ(2γ S)) + 2MW + Mc (7)

where θ(x) := π
⌊

1
2 + x

2π

⌋
and �x� specifies the integer part of x.

The validity of this rule has been checked against many examples. The rule is crucial in
the determination of the constant term in the NLIE.

We have a remark. The repeated integers are observed for Z
(1)
N (x), which are attributed to

the existence of special holes/roots [10, 11]. Our case studies indicate no symptom of ‘special
holes/roots’ for Z

(2)
N (x). We therefore dismiss the possibility in this paper. Even if they exist,

only a small modification will be needed in the following argument.
We need to introduce another pair of auxiliary functions, one of which coincides with T2,

apart from the normalization.

y1(x) := T2(x)

φ
(
x − i 3γ

2

)
φ
(
x + i 3γ

2

) Y1(x) := 1 + y1(x). (8)

The essential observation to derive the NLIE for ln b remains almost the same as the one
made in the case of the largest eigenvalue sector of the quantum transfer matrix [15].

We introduce renormalized functions,

T ∨
2 (x) = T2(x)

r2(x)
r2(x) :=

N2∏
α=1

tanh
π

2γ

(
x − θ(2)

α

)
(9)

and consider the integral,∫
C

d2

dz2
log T ∨

2 (z) e−ikz dz

where C encircles the strip of width γ (figure 2) in the counterclockwise manner.
Thanks to the renormalization factor, T ∨

2 (x) contains no zeros or poles inside C. The
Cauchy’s theorem thus concludes

0 =
∫

C	

d2

dz2
log T ∨

2 (z) e−ikz dx −
∫

Cu

d2

dz2
log T ∨

2 (z) e−ikz dx (10)

where C	,Cu mean the lower and the upper parts of the contour, respectively.

1 In the case of the finite-temperature problem, further shifts in x are needed for analyticity reasons, which is not
necessary for the finite-size problem.
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γ/2i

−γ/2i

Figure 2. The integration contour C. The straight line in the lower half-plane is termed as C	 while
the one in the upper plane is referred to as Cu after reversing the direction.

One then substitutes T ∨
2 in terms of B for Cu and T ∨

2 in terms of B̄ for C	 by utilizing (5)
and (6). This provides the various relations among auxiliary functions in the Fourier space.
After straightforward manipulations we find the desired NLIE

ln b(x) = Cb + iDb(x + iε) +
∫ ∞

−∞
Gs(x − x ′) ln B(x ′) dx ′

−
∫ ∞

−∞
Gs(x − x ′ + 2iε) ln B̄(x ′) dx ′

+
∫ ∞

−∞
K

(
x − x ′ − γ

2
i + iε

)
ln Y1(x

′) dx ′ (11)

ln y1(x) = Dy(x) +
∫ ∞

−∞

(
K

(
x − x ′ +

γ

2
i − iε

)
ln B(x ′)

+K
(
x − x ′ − γ

2
i + iε

)
ln B̄(x ′)

)
dx ′ (12)

where the kernel functions read

Gs(x) = 1

2π

∫ ∞

−∞

sinh
(

π
2 − 3γ

2

)
k

2 cosh
(

γ

2 k
)

sinh
(

π
2 − γ

)
k

eikx dk

K(x) = 1

2π

∫ ∞

−∞

1

2 cosh
(

γ

2 k
) eikx dk.

It is worth mentioning that Gs(x) is related to the logarithmic derivative of the soliton–
soliton scattering matrix of the sine-Gordan model, and K(x) is a standard kernel function in
the thermodynamic Bethe ansatz equation for the RSOS model [29].

The constant Cb is found by matching both sides of NLIE at x → −∞ and it reads,

Cb = π iS − iθ(γ S). (13)

We remark that, depending on the choice of branches, this value is determined only modulo
2π i. This ambiguity can be absorbed into the definitions of branch cut integers.

The driving term in (11) consists of three parts: Db(x) = D
(b)
bulk(x) + D

(b)
hole(x) + D

(b)
roots(x).

The first term is identical to that for the ground state, thus we refer it to as the bulk contribution,

D
(b)
bulk(x) = NχK(x)
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where χ ′
K(x) = 2πK(x) and χK(−∞) = 0. The second one consists of two pieces, the

contributions of holes of T1 and T2.

D
(b)
hole(x) =

∑
j

χ
(
x − θ

(1)
j

)
+

∑
α

χ
(
x − θ(2)

α

)
where χ(x) is an odd primitive of 2πGs(x) and χ(0) = 0. The third term represents the
contributions from complex zeros other than 2-strings,

D
(b)
roots(x) = −

∑
σ=±,j

χ
(
x −

(
cσ
j − σ

γ

2
i
))

+
∑

σ=±,j

φδ

(
x − (

wσ
j − σ π

2 i
)

η

)

+
∑

j

φδ

(
x − pj

η

)
(14)

φδ(x) := 1

i

d

dx
log − sinh(x − iδ)

sinh(x + iδ)

and parameters are given by δ = π(π−3γ )

2(π−2γ )
and η = 1 − γ

π
. The last two summations in (14)

can also be written as

−
∑

σ=±,j

χII

(
x −

(
wσ

j − σ i
γ

2

))
−

∑
j

χII

(
x − pj − π − γ

2
i

)

where we adopt the notation: for any function f (x), fII (x) = f (x) + f (x − iγ sgn(Im x))

[10].
The driving term for ln y1 lacks the bulk contribution and is composed of two terms,

Dy(x) = D
(y)

hole + D
(y)
roots. Explicitly,

D
(y)

hole(x) = i
∑

α

χK

(
x − θ(2)

α +
γ

2
i
)

D
(y)
roots(x) = −i

∑
σ=±,j

χK

(
x − cσ

j + σγ i
)
.

For given locations of excited zeros and holes, equations (11) and (12) fix the values of
auxiliary functions (modulo exp(2π i)). Then the evaluation of energy spectra for any N is
immediate from the following expression:

E = e0 + ehole + eroots + eB. (15)

In the above e0 denotes the bulk ground-state energy e0 = −N(cot γ + cot 2γ ). The
second term ehole stands for the excitation energy for a hole,

ehole =
∑

j

e
(
θ

(2)
j

)
e(x) := π

γ

1

cosh π
γ
x

.

Among the contributions from complex excitations, the one from the close roots appears here
explicitly,

eroots = −
∑

σ=±,j

e
(
cσ
j − iσ

γ

2

)
.

This phenomenon is also observed for the spin- 1
2 case [10] for γ � π

2 .
The last term contains implicit contributions from all excitations, and it is given by

eB = 1

i

∫
K ′

(
x − x ′ − iε + i

γ

2

) ∣∣∣
x→−iγ /2

ln B(x ′) dx ′

+
1

i

∫
K ′

(
x − x ′ + iε − i

γ

2

) ∣∣∣
x→−iγ /2

ln B̄(x ′) dx ′.
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The locations of complex roots and holes are, however, not given a priori. Therefore an
improvement of the set of NLIE is necessary so as to make the evaluation of these locations
possible. To resolve this, we need the NLIE for ln a with a general complex argument z.

The derivation of the NLIE can be done in two ways. One starts from the derivation for
real z, then applies the analytic continuation argument in [10] to derive the equation valid for y

with larger complex parts. The procedure is straightforward but for a small technical difficulty
which does not show up in the spin- 1

2 problem. Alternatively, one can start directly from y

with larger complex part, apply carefully the following simple lemma 1 to reach desired NLIE.

Lemma 1. We define, for a smooth function f (z), its ‘Fourier transformation’ by

fy[k] = 1

2π

∫ ∞

−∞
f (x + iy) e−ikx dx (16)

with z = x + iy.
Suppose f (z) has a pole at z = z0 with the residue r and analytic elsewhere. For

Im z0 > 0

fy[k] =
{
f [k] e−ky 0 � y < Im z0

(f [k] − ir e−ikz0) e−ky y > Im z0.

Similarly for Im z0 < 0

fy[k] =
{
f [k] e−ky Im z0 � y < 0
(f [k] + ir e−ikz0) e−ky y < Im z0.

We have derived the following equations in these two ways and checked that they lead to
identical results.

A moment’s consideration convinces us that we need to treat the equations, at least by
three separate regimes for positive imaginary values of z.

For the simplest case, Im z ∈ [
0,

γ

2

)
, the NLIE reads

ln a(z) = Ca + iDa(z) −
∫ ∞

−∞
K(z − x ′ − iε) ln B dx ′ +

∫ ∞

−∞
K(z − x ′ + iε) ln B̄ dx ′ (17)

where the constant and drive terms are given by

Ca = 2iθ(2γ S) − iθ(3γ S + θ(2γ S))

Da(z) =
∑

σ=±,j

χK

(
z −

(
cσ
j − σ

γ

2
i
))

−
∑

α

χK

(
z − θ(2)

α

)
.

The equation ceases to be valid as Im z crosses γ

2 due to the singularities existing in the
kernel functions of the above equation. Taking account of the modification due to them, we
find the equation for Im z ∈ (

γ

2 ,
3γ

2

)
ln a(z)− ln

(
1 +

1

a(z − iγ )

)
=−Cb − iDb

(
z − i

γ

2

)
−

∫ ∞

−∞
Gs

(
z − i

γ

2
− x ′ − iε

)
ln B dx ′

+
∫ ∞

−∞
Gs

(
z − i

γ

2
− x ′ + iε

)
ln B̄ dx ′ +

∫ ∞

−∞
K(z − x ′) ln(1 + y1(x

′)) dx ′.

(18)

The simultaneous evaluation of a(z) at different strips is thus necessary within this framework.
When z = iγ , some spurious singularities appear on the rhs, which causes some numerical
problems. We hope to report on the remedy in a separate communication.
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In the last case, Im z ∈ ( 3γ

2 , π
2

)
, the equation takes again a simpler form,

ln a(z) = iD′
a(z) −

∫ ∞

−∞
GII

s

(
z − i

γ

2
− x ′ − iε

)
ln B dx ′

+
∫ ∞

−∞
GII

s

(
z − i

γ

2
− x ′ + iε

)
ln B̄ dx ′. (19)

Note that integration constant is null modulo 2π i and the drive term reads,

D′
a(z) =

∑
α

φδ

(
z − iπ

2 − θ(2)
α

η

)
−

∑
σ=±,j

φδ

(
z − iπ

2 − (
cσ
j − σ

γ

2 i
)

η

)

−
∑

σ=±,j

φII
δ

(
z − i γ

2 − (
wσ

j − σ π
2 i

)
η

)
−

∑
φII

δ

(
z − i γ

2 − pj

η

)
.

Although these three NLIE for ln a take rather involved forms, their meaning is simple:
once ln B, ln B̄ and ln Y are known on the real axis, the NLIE yield the evaluation of ln a

at arbitrary z. Again, we have checked the validity of these NLIE at various points in the
complex plane.

As noted above, the locations of complex roots and holes are determined by ‘quantization’
conditions

ln a
(
θ

(1)
j

) = (
2I

(a)
j + 1

)
π, ln b

(
θ(2)
α − iε

) = (
2I (b)

α + 1
)
π

ln a
(
c±
j

) = (
2I

(c±)
j + 1

)
π, ln a

(
w±

j

) = (
2I

(w±)
j + 1

)
π, (20)

ln a
(
pj +

π

2
i) = (

2I
(p)

j + 1
)
π.

To be precise the NLIE still leaves the 2π i ambiguity as remarked above. Thus one has
to be careful in the choice of branch cuts. We will present several examples of proper choices
in the next section.

The set of properly chosen integers then fixes the locations of complex roots and holes,
thereby the energy spectra. In this sense, the NLIE characterizes the finite-size spectra
completely.

4. Low lying excitations in the thermodynamic limit

For an illustration, we consider the energy levels of some low lying excitations in the
thermodynamic limit. We consider the weak anisotropy γ → 0 case. As shown in [6, 10, 24],
the scaling behaviour of these levels can be evaluated without solving the NLIE explicitly.

The contribution to the excited spectra mainly comes from the left and right extremes of
root distribution. In the limit, N → ∞, these two contributions are almost decoupled.

The energy scales as

E ∼ Nε0 +
1

N
�E

where ε0 denotes the bulk ground-state energy. The scaling energy �E is given by the sum of
left and right contributions, �E = �E+ +�E−. We conveniently introduce scaling functions,

a±(x) = a

(
±γ

π
(x + ln N)

)
, A±(x) = 1 + a±(x)

b±(x) = b

(
±γ

π
(x + ln N)

)
, B±(x) = 1 + b±(x)

y±(x) = y1

(
±γ

π
(x + ln N)

)
, Y±(x) = 1 + y±(x).
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Similarly, with holes near the left (right) extremes, we associate the new locations θ+(θ−),

θ±
j = ±π

γ
θ

(2)
j − log N. (21)

Then the left/right contributions are explicitly written as

�E± = 2π

γ

∑
j

e−θ±
j ± 1

iγ

∫
e−(x±iε′) log B± dx ∓ 1

iγ

∫
e−(x∓iε′) log B̄± dx (22)

where ε′ = π
γ
ε. In the following discussion, it is thus irrelevant to set ε′ → 0 for notational

simplicity.
The NLIE can also be transformed into scaling forms. We prepare associated kernel

functions and drive functions,

Kγ (x) = γ

π
K

(γ

π
x
)

, Gγ (x) = γ

π
Gs

(γ

π
x
)

χγ (x) := χ
(γ

π
x
)

, χ
γ

K(x) := χK

(γ

π
x
)

.

Then the set of resultant NLIE takes the form

ln b∓(x) = ∓2i e−x + C±
b + iD±

b (x) +
∫

Gγ (x − x ′) ln B±(x ′) dx ′

−
∫

Gγ (x − x ′) ln B̄±(x ′) dx ′ +
∫

Kγ
(
x − x ′ ∓ π

2
i
)

ln Y±(x ′) dx ′

ln y±(x) = C±
y + D±

y (x) +
∫

Kγ
(
x − x ′ ± i

π

2

)
ln B±(x ′) dx ′

+
∫

Kγ
(
x − x ′ ∓ i

π

2

)
ln B̄±(x ′) dx ′.

Those scaling NLIE for ln a± have similar but more involved forms. We only write the
case Im x ∈ [

0,
γ

2

)
,

ln a±(x) = C±
a + iD±

a −
∫

Kγ (x − x ′) log B±(x ′) dx ′ +
∫

Kγ (x − x ′) log B̄±(x ′) dx ′.

The constants and D functions in the above depend on the choice of specific state of
interest and choice of branch cut integers. Below we consider simple examples for which the
results of numerical studies are available.

Example 1. We consider the lowest excitation in the sector Sz = 1. It is shown numerically
that the N − 2 zeros of Q(x) form the sea of the 2-strings and the last zero is located at the
origin [17, 18]. In the strip Im x ∈ [− γ

2 ,
γ

2

]
, T1 possesses no zeros while two zeros of T2 are

located on the real axis. We denote their scaled locations (21) by θ±.
The drive terms in this case are found to be,

C±
b = ∓(π − δ)i, D±

b = ±χγ (x − θ±)

C±
y = ∓π i, D±

y = ±iχγ

K

(
x − θ± ± π

2
i
)

.

We conveniently choose the quantization conditions, log b±(θ±) = ∓(2I± + 1)π . The
locations of holes then satisfy

e−θ± = ∓ 1

2i

(
−(2πI± + δ)i −

∫
Gγ (θ± − x) ln B±(x) dx

+
∫

Gγ (θ± − x) ln B̄±(x) dx −
∫

Kγ
(
θ± − x ∓ π

2
i
)

ln Y±(x) dx

)
. (23)
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Our choice of C±
b and of the branch cut integers leads to I± � 0 in the present case. By

substituting (23) into (22), we present �E± only in terms of auxiliary functions,

�E± = 1

iγ

(
±

∫
e−x log B± dx ∓

∫
e−x log B̄± dx + (2π2I± + δπ)i

±π

∫
Gγ (θ± − x) ln B±(x) dx ∓ π

∫
Gγ (θ± − x) ln B̄±(x) dx

±
∫

Kγ
(
θ± − x ∓ π

2
i
)

ln Y±(x) dx

)
. (24)

The standard dilogarithm trick leads to the explicit values of desired integrals,

4i

(
±

∫
e−x log B± dx ∓

∫
e−x log B̄± dx ± π

∫
Gγ (θ± − x) ln B±(x) dx

∓π

∫
Gγ (θ± − x) ln B̄±(x) dx ± π

∫
Kγ

(
θ± − x ∓ π

2
i
)

ln Y±(x) dx

)
± (π − 2δ)i(log B±(∞) − log B̄±(∞)) ∓ iπ log Y±(∞)

=
∫

(log b±)′ log B± dx −
∫

log b±(log B±)′ dx +
∫

(log b̄±)′ log B̄± dx

−
∫

log b̄±(log B̄±)′ dx +
∫

(log y±)′ log Y± dx −
∫

(log y± ∓ π i)(log Y±)′ dx

(25)

where we have used χ
γ

K(∞) = π . It is worth mentioning the asymptotic values

b±(−∞) = 0 b̄±(−∞) = 0

y±(−∞) = −1

b±(∞) = 1 + e∓2iγ

e±2iγ
b̄±(∞) = 1 + e±2iγ

e∓2iγ

y±(∞) = 1 + 2 cos 2γ.

Using these values and by the change of integration variables, we find that the rhs of (25) is
given by the dilogarithm functions,

2L+(b±(∞)) + 2L+(b±(∞)) + 2L+(y±(∞)) − 2L+(1) + 2L(1) + 2L+(1) ∓ π i log Y±(∞).

(26)

Explicit definitions are as follows:

L+(x) := 1

2

∫ x

0

(
log(1 + y)

y
− log y

1 + y

)
dy,

L(x) := −1

2

∫ x

0

(
log(1 − y)

y
+

log y

1 − y

)
dy.

The scaling energy �E is divided into two parts �E = �E1 +�E2. The former brings the
central charge �E1 = πv

6 c while the second is related to the scaling dimension, �E2 = 2πvX.
The sound velocity is readily evaluated v = π

γ
.

It is easily shown that the sum of the first four terms in (26) remains constant for small
γ . Thus the dilogarithm formula, utilized in the study of the ground state [15] in the rational
case (γ → 0), is also applicable. We identify these terms as the contribution to �E1 = πv

6 c.
This leads to the correct central charge 3

2 .



11968 J Suzuki

Evaluating the remaining contributions, we find,

�E2 = 2π2

γ

(
I+ + I− + Xc +

1

8

)

where Xc = π−2γ

4π
. Therefore, by choosing the minimal value I+ = I− = 0, the above

calculation recovers the desired scaling dimension, X = Xc + 1
8 [17, 18].

Example 2. Let us consider another excitation in the sector Sz = 1. The N − 2 zeros of
Q function again form the sea of the 2-strings while the last zero is located at π

2 i. In this
case, T1(x) possesses two zeros on the real axis while T2(x) has four zeros. We denote
corresponding scaling locations by ξ± for zeros of T1(x) and θ±

j (j = 1, 2) for those of T2(x).
In this case it is convenient to introduce χ+

K(x) := χ
γ

K(x) − π so that χ+
K(∞) = 0.

Then the drive terms are then given by

C±
b = ∓π i D±

b = ±
∑

j

χγ
(
x − θ±

j

) ± χ+
K(x − ξ±)

C±
y = 0 D±

y = ±i
∑

j

χ+
K

(
x − θ±

j ± π

2
i
)

C±
a = 0 D±

a = ∓
∑

j

χ+
K

(
x − θ±

j

)
.

The quantization conditions read

log b±(
θ±
j

) = ∓(
2I±

j + 1
)
π log a±(ξ±) = ±(2J± + 1)π.

One easily verifies I±
j , J± � 0.

The quantization condition for log b± leads to an expression analogous to (23). This time,
however, the rhs contains 1

2

∑
j χ+

K

(
θ±
j − ξ±)

. The quantization condition for log a± enables
us to represent this by integrals,∑

j

χ+
K

(
θ±
j − ξ±) = −π ± 1

i

∫
Kγ (ξ± − x) log B±(x) dx

∓ 1

i

∫
Kγ (ξ± − x) log B̄±(x) dx. (27)

We used a simple relation χ+
K(x) + χ+

K(−x) = −π and put J± = 0.
We then proceed as example 1 and obtain the same �E1 and

�E2 = 2π2

γ

(
1 +

γ

π(π − 2γ )

)
= 2π2

γ

(
Xc +

1

16Xc

+
1

2

)

where we choose I±
j = j − 1. This again coincides with the numerical result [17].

We also analysed several examples in the different spin sectors, and checked that the
results all recovered the desired values. We however omit further discussions for brevity.

5. Discussion and summary

In this report, we derive a set of NLIE which characterizes excited state spectra of the spin-1
chain with anisotropic interactions. The equations are tested numerically against exact data.
Some desired scaling dimensions are derived analytically for some low excitations.

Finally, we comment on an implication of the result obtained here. Through the light
cone approach [30, 31], the inhomogeneous version of the spin-1 chain, or the 19-vertex
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model will be the proper candidate for the discrete analogue of the supersymmetric sine-
Gordon model. The latter’s excited spectra have attracted attention recently [20]. A proper
deformation of the NLIE obtained in this paper may be useful in such investigations. Assume
that the several conjectures on the analytic properties in the spin chain problem are also valid
for the supersymmetric sine-Gordon model. Then it is readily shown that we reach almost the
same nonlinear integral equations. The ‘bulk’ driving term of log b should be then replaced
by mL sinh π

γ
x where mL is related to the inhomogeneity � by mL = 2N exp

(−π
γ
�

)
. We

however avoid drawing a conclusion in haste as it requires careful analytical and numerical
checks; the consistency to the S-matrix picture in [32], for instance. We hope to report this in
the near future, together with complete discussion on the conformal limit.
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[7] Klümper A, Wehner T and Zittarz J 1993 J. Phys. A: Math. Gen. 26 2815
[8] Destri C and de Vega H J 1992 Phys. Rev. Lett. 69 2313
[9] Destri C and de Vega H J 1995 Nucl. Phys. B 438 413

[10] Destri C and de Vega H J 1997 Nucl. Phys. B 504 621
[11] Fioravanti D, Mariottini A, Quattrini E and Ravanini F 1997 Phys. Lett. B 390 243
[12] Feverati G, Ravanini F and Takacs G 1999 Nucl. Phys. B 540 543
[13] Bazhanov V V, Lukyanov S and Zamolodchikov A B 1997 Commun. Math. Phys. 190 247
[14] Bazhanov V V, Lukyanov S and Zamolodchikov A B 1997 Nucl. Phys. B 489 487
[15] Suzuki J 1999 J. Phys. A: Math. Gen. 32 2341
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